#### Answer

$941,094$

#### Work Step by Step

RECALL:
$P(n, r) = \dfrac{n!}{(n-r)!}$
Use the formula above to obtain:
$P(99, 3) = \dfrac{99!}{(99-3)!}
\\P(99, 3) = \dfrac{99!}{96!}
\\P(99, 3) = \dfrac{99(98)(97)(96!)}{96!}$
Cancel the common factor $96!$ to obtain:
$P(99, 3) = 99(98)(97)
\\P(99, 3) = 941,094$