College Algebra (11th Edition)

Published by Pearson
ISBN 10: 0321671791
ISBN 13: 978-0-32167-179-0

Chapter 4 - Section 4.3 - Logarithmic Functions - 4.3 Exercises: 88

Answer

$-0.6532$

Work Step by Step

$\bf{\text{Solution Outline:}}$ Use the Laws of Logarithms to find an equivalent expression for the given expression, $ \log_{10} \dfrac{2}{9} ,$ which uses the given logarithmic values, $\log_{10} 2= 0.3010 $ and/or $\log_{10} 3= 0.4771 .$ $\bf{\text{Solution Details:}}$ The given expression can be expressed as \begin{array}{l}\require{cancel} \log_{10} \dfrac{2}{3^2} .\end{array} Using the Quotient Rule of Logarithms, which is given by $\log_b \dfrac{x}{y}=\log_bx-\log_by,$ the expression above is equivalent \begin{array}{l}\require{cancel} \log_{10} 2-\log_{10} 3^2 .\end{array} Using the Power Rule of Logarithms, which is given by $\log_b x^y=y\log_bx,$ the expression above is equivalent \begin{array}{l}\require{cancel} \log_{10} 2-2\log_{10} 3 .\end{array} Substituting the known values of the logarithmic expressions results to \begin{array}{l}\require{cancel} 0.3010-2(0.4771) \\\\= 0.3010-0.9542 \\\\= -0.6532 .\end{array}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.