Answer
$(x-11)(x-2)$.
Work Step by Step
The given polynomial is
$=x^2-13x+22$
Standard form is $x^2+bx+c$.
We have $b=-13$ and $c=22$.
$b$ is negative and $c$ is positive.
Factor pair of $22$, whose sum is $-13$:-
$-11,-2$
The values of $p$ and $q$ are $-11$ and $-2$.
Hence, the factor of the polynomial is $(x+p)(x+q)=(x-11)(x-2)$.
Check:-
$=(x-11)(x-2)$
$=x^2-2x-11x+22$
$=x^2-13x+22$
True.