Algebra and Trigonometry 10th Edition

Published by Cengage Learning
ISBN 10: 9781337271172
ISBN 13: 978-1-33727-117-2

Chapter 1 - 1.5 - Complex Numbers - 1.5 Exercises - Page 120: 93

Answer

$i^5=i$ $i^6=-1$ $i^7=-i$ $i^8=1$ $i^9=i$ $i^{10}=-1$ $i^{11}=-i$ $i^{12}=1$ $i^{4k+1}=i$ $i^{4k+2}=-1$ $i^{4k+3}=-i$ $i^{4k}=1$. To find $i^n$, where $n$ is a positive integer power, find the remainder $r$ of $n\div 4$, you will have $i^n=i^r$.

Work Step by Step

$$i^5=i^4i=1(i)=i$$ $$i^6=i^4i^2=1(-1)=-1$$ $$i^7=i^4i^3=1(-i)=-i$$ $$i^8=i^4i^4=1(1)=1$$ $$i^9=i^8i=1(i)=i$$ $$i^{10}=i^8i^2=1(-1)=-1$$ $$i^{11}=i^{10}i=-1(i)=-i$$ $$i^{12}=i^{10}i^2=-1(-1)=1$$ Notice that the answer repeats every four powers with these ordered values $i$, $-1$, $-i$ and then $1$. $i^{4k+1}=i$ $i^{4k+2}=-1$ $i^{4k+3}=-i$ $i^{4k}=1$. To find $i^n$, where $n$ is a positive integer power, find the remainder $r$ of $n\div 4$, you will have $i^n=i^r$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.