Algebra 2 Common Core

Published by Prentice Hall
ISBN 10: 0133186024
ISBN 13: 978-0-13318-602-4

Chapter 8 - Rational Functions - Chapter Test - Page 557: 24

Answer

$x = -6 \text{ or } x = 3$

Work Step by Step

Multiply each side of the equation by the LCD, which is $3x^2$ to eliminate the fractions: $$\begin{align*} 3x^2\left(\frac{1}{x}+\frac{1}{3}\right)&=\frac{6}{x^2} \cdot 3x^2\\ 3x^2\left(\frac{1}{x}\right)+3x^2\left(\frac{1}{3}\right)&=\frac{6}{x^2} \cdot 3x^2\\ \end{align*}$$ Simplify: $$\require{cancel} \begin{align*} 3x^\cancel{2}\left(\frac{1}{\cancel{x}}\right)+\cancel{3}x^2\left(\frac{1}{\cancel{3}}\right)&=\frac{6}{\cancel{x^2}} \cdot 3\cancel{x^2}\\ 3x+x^2&=18\\ x^2+3x-18&=0\end{align*}$$ Factor the trinomial: $$(x+6)(x-3)=0$$ Solve the equation using the Zero-Product Property by equating each factor to $0$, then solving each equation: First factor: $$\begin{align*} x + 6 &= 0\\ x&=-6 \end{align*}$$ Second factor: $$\begin{align*} x -3 &= 0\\ x&=3 \end{align*}$$ To check the solution, plug in the values we just found for $x$ into the original equation: First solution: $$\begin{align*} \frac{1}{-6} + \frac{1}{3} &\stackrel{?}{=} \frac{6}{(-6)^2}\\ -\frac{1}{6} + \frac{1}{3} &\stackrel{?}{=} \frac{6}{36}\\ -\frac{1}{6} + \frac{2}{6} &\stackrel{?}{=} \frac{1}{6}\\ \frac{1}{6}&\stackrel{\checkmark}{=} \frac{1}{6}\\ \end{align*}$$ Second solution: $$\begin{align*} \frac{1}{3} + \frac{1}{3} &\stackrel{?}{=} \frac{6}{3^2}\\ \frac{2}{3} &\stackrel{?}{=} \frac{6}{9}\\ \frac{2}{3}&\stackrel{\checkmark}{=} \frac{2}{3}\\ \end{align*}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.