Algebra 2 Common Core

Published by Prentice Hall
ISBN 10: 0133186024
ISBN 13: 978-0-13318-602-4

Chapter 8 - Rational Functions - Chapter Test - Page 557: 23

Answer

$x = \frac{4}{3}$

Work Step by Step

First, factor all expressions to their simplest forms: $\dfrac{3}{x + 1} = \dfrac{1}{(x + 1)(x - 1)}$ Multiply each side of the equation by the LCD, which is $(x + 1)(x - 1)$, to eliminate the fractions: $$\begin{align*} (x+1)(x-1) \cdot \frac{3}{x+1}&=\frac{1}{(x+1)(x-1)} \cdot (x+1)(x-1)\\ \end{align*}$$ Simplify: $$\require{cancel} \begin{align*} \cancel{(x+1)}(x-1) \cdot \frac{3}{\cancel{x+1}}&=\frac{1}{\cancel{(x+1)(x-1)}} \cdot \cancel{(x+1)(x-1)}\\ \\(x-1)(3)&=1\\ 3x-3&=1\\ 3x&=1+3\\ 3x&=4\\ x&=\frac{4}{3} \end{align*}$$ To check the solution, plug in the value we just found for $x$ into the original equation: $$\begin{align*} \frac{3}{\frac{4}{3} + 1} &\stackrel{?}{=} \frac{1}{\left(\frac{4}{3}\right)^2 - 1}\\ \frac{3}{\frac{7}{3}}&\stackrel{?}{=}\frac{1}{\frac{16}{9}-1}\\\ 3\cdot \frac{3}{7}&\stackrel{?}{=}\frac{1}{\frac{16}{9}-\frac{9}{9}}\\ \frac{9}{7}&\stackrel{?}{=}\frac{1}{\frac{7}{9}}\\ \frac{9}{7}&\stackrel{\checkmark}{=}\frac{9}{7} \end{align*}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.