Algebra 1

Published by Prentice Hall
ISBN 10: 0133500403
ISBN 13: 978-0-13350-040-0

Chapter 11 - Rational Expressions and Functions - Mid-Chapter Quiz - Page 678: 2


$\dfrac{(c+3)}{(c-3)}; c \ne 3$

Work Step by Step

Given: $\dfrac{3c+9}{3c-9}$ Need to find the common factors of the given expression. $\dfrac{3c+9}{3c-9}=\dfrac{3(c+3)}{3(c-3)}$ $=\dfrac{(c+3)}{(c-3)}$ If we put $c=3$ then denominator becomes zero, which cannot be possible. After simplification, we get $=\dfrac{(c+3)}{(c-3)}; c \ne 3$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.