Algebra 1: Common Core (15th Edition)

Published by Prentice Hall
ISBN 10: 0133281140
ISBN 13: 978-0-13328-114-9

Chapter 11 - Rational Expressions and Functions - 11-2 Multiplying and Dividing Rational Expressions - Practice and Problem-Solving Exercises - Page 676: 65


$\frac{2m^{2}(m+2)}{(m-1)(m+4)}, with$ $m\ne-4,m\ne1$

Work Step by Step

Given expression : $(\frac{2m+4}{m}) \times (\frac{m^{3}}{m^{2}+m-12}) \times (\frac{m^{2}-m-6}{m^{2}+m-2})$ This becomes : $\frac{2(m+2)}{m} \times \frac{m^{3}}{(m-3)(m+4)} \times \frac{(m-3)(m+2)}{(m-1)(m+2)}$ $= \frac{2m^{2}(m+2)}{(m-1)(m+4)}$ (After dividing out the common factors (m-3) and (m+2))
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.