Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 13 - Review - Exercises - Page 942: 46

Answer

$12$

Work Step by Step

Step 1. Given the x-interval of $[0,3]$, divide the region into $n$ parts, the width of each part is $\Delta x=\frac{3}{n}$ Step 2. Use the right endpoints, the x-coordinates can be found as $x_k=0+k\Delta x=\frac{3k}{n}$ Step 3. Based on the given function $f(x)=x^2+1$, the height of the $k$th rectangle is given by $f(x_k)=(\frac{3k}{n})^2+1=\frac{9k^2}{n^2}+1$ Step 4. Approximate the area by adding up the areas of all the triangles and evaluate the limit when $n\to\infty$ $A=\lim_{n\to\infty}\sum^n_{k=1}f(x_k)\Delta x=\lim_{n\to\infty}\sum^n_{k=1}(\frac{9k^2}{n^2}+1)\frac{3}{n}=\lim_{n\to\infty} (\frac{27}{n^3} \sum^n_{k=1} k^2+ \frac{3}{n}\sum^n_{k=1}1)=\lim_{n\to\infty} (\frac{27}{n^3} \frac{n(n+1)(2n+1)}{6}+3)=\lim_{n\to\infty} (\frac{27}{6}\times \frac{2n(n+1)(n+1/2)}{n^3}+3)=9+3=12$ Step 5. The area of the region that lies under the graph over the given interval is $A=12$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.