Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 14 - Partial Derivatives - 14.3 Exercises - Page 937: 50

Answer

$\displaystyle \frac{\partial z}{\partial x}=\frac{\ln y}{2z-y},\qquad \displaystyle \frac{\partial z}{\partial y}=\frac{x+yz}{y(2z-y)}$

Work Step by Step

$yz+x\ln y=z^{2} \displaystyle \qquad/\frac{\partial}{\partial x}$, (y is constant, z is a function of x) $\displaystyle \frac{\partial}{\partial x}(yz+x\ln y)=\frac{\partial}{\partial x}(z^{2})$ $y\displaystyle \frac{\partial z}{\partial x}+\ln y=2z\frac{\partial z}{\partial x}$ $\ln y =2z\displaystyle \frac{\partial z}{\partial x}-y\frac{\partial z}{\partial x}$ $\ln y= (2z -y)\displaystyle \frac{\partial z}{\partial x}$ $\displaystyle \frac{\partial z}{\partial x}=\frac{\ln y}{2z-y}$ $yz+x\ln y=z^{2} \displaystyle \qquad/\frac{\partial}{\partial y}$, (x is constant, z is a function of y) $\displaystyle \frac{\partial}{\partial y}(yz+x\ln y)=\frac{\partial}{\partial y}(z^{2})$ $y\displaystyle \frac{\partial z}{\partial y}+z\cdot 1+x\cdot\frac{1}{y}=2z \displaystyle \frac{\partial z}{\partial y}$ $z +\displaystyle \frac{x}{y}=2z\frac{\partial z}{\partial y}-y\frac{\partial z}{\partial y}$ $\displaystyle \frac{yz+x}{y}=(2z-y) \displaystyle \frac{\partial z}{\partial y}$ $\displaystyle \frac{\partial z}{\partial y}=\frac{x+yz}{y(2z-y)}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.