Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 14 - Partial Derivatives - 14.3 Exercises - Page 937: 47

Answer

$\displaystyle \frac{\partial z}{\partial x}=-\frac{x}{3z},\qquad \frac{\partial z}{\partial y}=-\frac{2y}{3z}$.

Work Step by Step

$x^{2}+2y^{2}+3z^{2}=1 \displaystyle \qquad/\frac{\partial}{\partial x}$, (y is constant, z is a function of x) $\displaystyle \frac{\partial}{\partial x}(x^{2}+2y^{2}+3z^{2})=\frac{\partial}{\partial x}(1)$ $2x+0+6z \displaystyle \frac{\partial z}{\partial x}=0$ $6z\displaystyle \frac{\partial z}{\partial x}=-2x$ $\displaystyle \frac{\partial z}{\partial x}=\frac{-2x}{6z}$ $\displaystyle \frac{\partial z}{\partial x}=-\frac{x}{3z}$ $x^{2}+2y^{2}+3z^{2}=1 \displaystyle \qquad/\frac{\partial}{\partial y}$, (x is constant, z is a function of y) $\displaystyle \frac{\partial}{\partial y}(x^{2}+2y^{2}+3z^{2})=\frac{\partial}{\partial y}(1)$ $0+4y+6z\displaystyle \frac{\partial z}{\partial y}=0$ $6z \displaystyle \frac{\partial z}{\partial y}=-4y$ $ \displaystyle \frac{\partial z}{\partial y}=\frac{-4y}{6z}$ $ \displaystyle \frac{\partial z}{\partial y}=-\frac{2y}{3z}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.