Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 14 - Partial Derivatives - 14.3 Exercises - Page 937: 48

Answer

$\displaystyle \frac{\partial z}{\partial x}=\frac{x}{1-z},\qquad\frac{\partial z}{\partial y}=\frac{y}{z-1}$.

Work Step by Step

$x^{2}-y^{2}+z^{2}-2z =4 \displaystyle \qquad/\frac{\partial}{\partial x}$, (y is constant, z is a function of x) $\displaystyle \frac{\partial}{\partial x}(x^{2}-y^{2}+z^{2}-2z) =\displaystyle \frac{\partial}{\partial x}(4)$ $2x-0+2z \displaystyle \frac{\partial z}{\partial x}-2\frac{\partial z}{\partial x}=0$ $(2z -2)\displaystyle \frac{\partial z}{\partial x}=-2x$ $\displaystyle \frac{\partial z}{\partial x}=\frac{-2x}{2z-2}$ $\displaystyle \frac{\partial z}{\partial x}=\frac{-2(x)}{-2(-z+1)}$ $\displaystyle \frac{\partial z}{\partial x}=\frac{x}{1-z}$ $x^{2}-y^{2}+z^{2}-2z =4 \displaystyle \qquad/\frac{\partial}{\partial y}$, (x is constant, z is a function of y) $\displaystyle \frac{\partial}{\partial y}(x^{2}-y^{2}+z^{2}-2z)=\frac{\partial}{\partial y}(4)$ $0-2y +2z\displaystyle \frac{\partial z}{\partial y}-2\frac{\partial z}{\partial y}=0$ $(2z -2)\displaystyle \frac{\partial z}{\partial y}=2y$ $\displaystyle \frac{\partial z}{\partial y}=\frac{2y}{2z-2}$ $\displaystyle \frac{\partial z}{\partial y}=\frac{y}{z-1}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.