Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 14 - Partial Derivatives - 14.3 Exercises - Page 937: 44

Answer

$ f_{z}(x, y, z)=\displaystyle \frac{\sin z\cos z}{\sqrt{\sin^{2}x+\sin^{2}y+\sin^{2}z}},\quad f_{z} (0,0,\ \displaystyle \frac{\pi}{4})= \displaystyle \frac{\sqrt{2}}{2}$

Work Step by Step

$f(x, y, z) =\sqrt{\sin^{2}x+\sin^{2}y+\sin^{2}z}=(\sin^{2}x+\sin^{2}y+\sin^{2}z)^{1/2}$ Treat x and z as constant to calculate $f_{z}(x, y ,z)$. Apply the chain rule (twice). $f_{z}(x, y, z)=\displaystyle \frac{1}{2}(\sin^{2}x+\sin^{2}y +\displaystyle \sin^{2}z)^{-1/2}[\frac{\partial}{\partial z}(\sin^{2}x+\sin^{2}y+\sin^{2}z)]$ $=\displaystyle \frac{1}{2}(\sin^{2}x+\sin^{2}y +\sin^{2}z)^{-1/2}(0+0+2\sin z \cos z)$ $=\displaystyle \frac{\sin z\cos z}{\sqrt{\sin^{2}x+\sin^{2}y+\sin^{2}z}}$ $f_{z} (0,0,\ \displaystyle \frac{\pi}{4})=\frac{\sin\frac{\pi}{4}\cos\frac{\pi}{4}}{\sqrt{\sin^{2}0+\sin^{2}0+\sin^{2}\frac{\pi}{4}}}$ $=\displaystyle \frac{\frac{\sqrt{2}}{2}.\frac{\sqrt{2}}{2}}{\sqrt{0+0+(\frac{\sqrt{2}}{2})^{2}}}$ $=\displaystyle \frac{\frac{1}{2}}{\frac{\sqrt{2}}{2}}$ $=\displaystyle \frac{1}{\sqrt{2}} = \displaystyle \frac{\sqrt{2}}{2}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.