Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 14 - Partial Derivatives - 14.3 Exercises - Page 937: 49

Answer

$\displaystyle \frac{\partial z}{\partial x}=\frac{yz}{e^{z}-xy},\qquad\frac{\partial z}{\partial y}=\frac{xz}{e^{z}-xy}$

Work Step by Step

$e^{z}=xyz \displaystyle \qquad/\frac{\partial}{\partial x}$, (y is constant, z is a function of x) $\displaystyle \frac{\partial}{\partial x}(e^{z})=\frac{\partial}{\partial x}(xyz)$ ... RHS: product rule $e^{z}=\displaystyle \frac{\partial z}{\partial x}=y(x\frac{\partial z}{\partial x}+z\cdot 1)$ $e^{z}\displaystyle \frac{\partial z}{\partial x}-xy \displaystyle \frac{\partial z}{\partial x}=yz$ $(e^{z}-xy)\displaystyle \frac{\partial z}{\partial x}=yz$, $\displaystyle \frac{\partial z}{\partial x}=\frac{yz}{e^{z}-xy}$. $e^{z}=xyz \displaystyle \qquad/\frac{\partial}{\partial y}$, (x is constant, z is a function of y) $\displaystyle \frac{\partial}{\partial y}(e^{z})=\frac{\partial}{\partial y}(xyz)$ ... RHS: product rule $e^{z}\displaystyle \frac{\partial z}{\partial y}=x(y\frac{\partial z}{\partial x}+z\cdot 1)$ $e^{z}\displaystyle \frac{\partial z}{\partial y}-xy\frac{\partial z}{\partial y}=xz$ $(e^{z}-xy)\displaystyle \frac{\partial z}{\partial y}=xz$ $\displaystyle \frac{\partial z}{\partial y}=\frac{xz}{e^{z}-xy}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.