Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 14 - Partial Derivatives - 14.3 Exercises - Page 937: 51

Answer

$a.\quad \displaystyle \frac{\partial z}{\partial x}=f'(x),\quad \frac{\partial z}{\partial y}=g'(y)$. $b.\quad \displaystyle \frac{\partial z}{\partial x}=f'(x+y),\quad \frac{\partial z}{\partial y}=f'(x+y)$.

Work Step by Step

$a.$ $z =f(x)+g(y)$ For $\displaystyle \frac{\partial z}{\partial x}$, y and g(y) are constant, $\displaystyle \frac{\partial z}{\partial x}=\frac{\partial}{\partial x}[f(x)]+0=f'(x)$, For $\displaystyle \frac{\partial z}{\partial y}$, x and f(x) are constant, $\displaystyle \frac{\partial z}{\partial y}=0+\frac{\partial}{\partial y}[g(x)]=g'(y)$ $b.$ $z =f(x+y)$, a composition. Chain rule applies. Let $u=x+y$. Then$, \displaystyle \frac{\partial u}{\partial x}=1, \quad \frac{\partial u}{\partial y}=1$ $\displaystyle \frac{\partial z}{\partial x}=\frac{df}{du}\frac{\partial u}{\partial x}$ $\displaystyle \frac{\partial z}{\partial x}=\frac{df}{du}(1)=f'(u)$ $=f'(x+y)$ $ \displaystyle \frac{\partial z}{\partial y}=\frac{df}{du}\frac{\partial u}{\partial y}=\frac{df}{du}(1)=f'(u)$ $=f'(x+y)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.