Thermodynamics: An Engineering Approach 8th Edition

Published by McGraw-Hill Education
ISBN 10: 0-07339-817-9
ISBN 13: 978-0-07339-817-4

Chapter 7 - Entropy - Problems - Page 401: 7-62

Answer

$S_{\text {gen }}=4.08 kJ/K$

Work Step by Step

We take the entire contents of the tank, water + iron block, as the system. This is a closed system since no mass crosses the system boundary during the process. The energy balance for this system can be expressed as $ \begin{aligned} \underbrace{E_{\text {in }}-E_{\text {out }}}_{\begin{array}{c} \text { Net energy trusfer } \\ \text { by heat, work, and mass } \end{array}} & =\underbrace{\Delta E_{\text {system }}}_{\begin{array}{c} \text { Changein intemal, kinetic, } \\ \text { potentialeftc. energies } \end{array}} \\ 0 & =\Delta U \end{aligned} $ or, $ \begin{gathered} \Delta U_{\text {iron }}+\Delta U_{\text {water }}=0 \\ {\left[m c\left(T_2-T_1\right)\right]_{\text {iron }}+\left[m c\left(T_2-T_1\right)\right]_{\text {water }}=0} \end{gathered} $ Substituting, $ \begin{gathered} (25 \mathrm{~kg})(0.45 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K})\left(T_2-350^{\circ} \mathrm{C}\right)+(100 \mathrm{~kg})(4.18 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K})\left(T_2-18^{\circ} \mathrm{C}\right)=0 \\ T_2=26.7^{\circ} \mathrm{C} \end{gathered} $ The entropy generated during this process is determined from $ \begin{aligned} & \Delta S_{\mathrm{inon}}=m c_{\mathrm{wg}} \ln \left(\frac{T_2}{T_1}\right)=(25 \mathrm{~kg})(0.45 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}) \ln \left(\frac{299.7 \mathrm{~K}}{623 \mathrm{~K}}\right)=-8.232 \mathrm{~kJ} / \mathrm{K} \\ & \Delta S_{\text {water }}=m c_{\mathrm{wvg}} \ln \left(\frac{T_2}{T_1}\right)=(100 \mathrm{~kg})(4.18 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}) \ln \left(\frac{299.7 \mathrm{~K}}{291 \mathrm{~K}}\right)=12.314 \mathrm{~kJ} / \mathrm{K} \end{aligned} $ Thus, $ S_{\text {gen }}=\Delta S_{\text {total }}=\Delta S_{\text {ivon }}+\Delta S_{\text {water }}=-8.232+12.314=4.08 \mathrm{~kJ} / \mathbf{K} $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.