Thermodynamics: An Engineering Approach 8th Edition

Published by McGraw-Hill Education
ISBN 10: 0-07339-817-9
ISBN 13: 978-0-07339-817-4

Chapter 7 - Entropy - Problems - Page 401: 7-54

Answer

$\Delta S_{surr}\geq-0.8708\ kJ/K$

Work Step by Step

From table A-5: Initial ($P_1=175\ kPa, x_1=0.10$): $v_1=0.1013\ m³/kg,\ s_1=2.0537\ kJ/kg.K$ Final ($P_2=150\ kPa, x_2=0.40$): $v_2=0.4644\ m³/kg,\ s_2=3.7494\ kJ/kg.K,\ s_{out}=s_G=7.2231\ kJ/kg.K$ Since $m=V/v,\ V_t=0.02\ m^3$ $m_1=0.1974\ kg$ $m_2=0.04307\ kg$ From the mass balance: $\frac{dm}{dt}=-\dot{m}$ From the entropy balance and the second law: $\dot{S}_{gen}=\frac{dS}{dt}-\dot{S}_{in}+\dot{S}_{out}\geq0$ $\frac{dS_{surr}}{dt}+\frac{d(ms)}{dt}+\dot{m}s\geq0$ Combining with the mass balance and integrating over time: $\Delta S_{surr}+m_2s_2-m_1s_1-s_{out}(m_2-m_1)\geq0$ Hence: $\Delta S_{surr}\geq-0.8708\ kJ/K$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.