Thermodynamics: An Engineering Approach 8th Edition

Published by McGraw-Hill Education
ISBN 10: 0-07339-817-9
ISBN 13: 978-0-07339-817-4

Chapter 7 - Entropy - Problems - Page 401: 7-61

Answer

$ \Delta S_{\mathrm{R}-134 \mathrm{a}}=0.0008$ $\Delta S_{\text {chips }}=−0.000687kJ/K$ $\Delta S_{\text {total }}=0.000154kJJ/K$

Work Step by Step

(a) The energy balance for this system can be expressed as $ \begin{aligned} \underbrace{E_{\text {in }}-E_{\text {out }}}_{\begin{array}{c} \text { Net energy trnsfer } \\ \text { by heat, wonk, and mass } \end{array}} & =\underbrace{\Delta E_{\text {system }}}_{\begin{array}{c} \text { Changan intemal, kinetic, } \\ \text { potential,etc. energies } \end{array}} \\ 0 & =\Delta U\\ &=\left[m\left(u_2-u_1\right)\right]_{\text {chips }}+\left[m\left(u_2-u_1\right)\right]_{\mathrm{R}-134 \mathrm{a}} \\ {\left[m\left(u_1-u_2\right)\right]_{\text {chips }} } & =\left[m\left(u_2-u_1\right)\right]_{\mathrm{R}-134 \mathrm{a}} \end{aligned} $ We determine the heat released by the chips $ Q_{\text {chips }}=m c\left(T_1-T_2\right)=(0.010 \mathrm{~kg})(0.3 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K})[20-(-40)] \mathrm{K}=0.18 \mathrm{~kJ} $ The mass of the refrigerant vaporized during this heat exchange process is $ m_{\mathrm{g}, 2}=\frac{Q_{\mathrm{R}-134 \mathrm{a}}}{u_{\mathrm{g}}-u_f}=\frac{Q_{\mathrm{R}-134 \mathrm{a}}}{u_{f g @-40^{\circ} \mathrm{C}}}=\frac{0.18 \mathrm{~kJ}}{207.40 \mathrm{~kJ} / \mathrm{kg}}=0.0008679 \mathrm{~kg} $ There is only a small fraction of R-134a which s vaporized during the process. Therefore, the temperature of $R-134a$ remains constant during the process. The change in the entropy of the R-134a is (at $-40^{\circ} \mathrm{F}$ from Table A-$11$) $ \begin{aligned} & \Delta S_{\mathrm{R}-134 \mathrm{a}}=m_{g, 2} s_{g, 2}+m_{f, 2} s_{f, 2}-m_{f, 1} s_{f, 1} \\ & =(0.0008679)(0.96866)+(0.005-0.0008679)(0)-(0.005)(0) \\ & =0.00084 \mathrm{~kJ} / \mathrm{K} \\ & \end{aligned} $ (b) We calculate the entropy change of the chips: $ \Delta S_{\text {chips }}=m c \ln \frac{T_2}{T_1}=(0.010 \mathrm{~kg})(0.3 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}) \ln \frac{(-40+273) \mathrm{K}}{(20+273) \mathrm{K}}=-\mathbf{0 . 0 0 0 6 8 7 k J / K} $ (c) The total entropy change is $ \Delta S_{\text {total }}=S_{\text {gen }}=\Delta S_{\mathrm{R}-134 \mathrm{a}}+\Delta S_{\text {chips }}=0.000841+(-0.000687)=\mathbf{0 . 0 0 0 1 5 4 k J} \mathbf{J} / \mathbf{K} $ The positive result for the total entropy change (i.e., entropy generation) indicates that this process is possible.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.