Physics: Principles with Applications (7th Edition)

Published by Pearson
ISBN 10: 0-32162-592-7
ISBN 13: 978-0-32162-592-2

Chapter 14 - Heat - Problems - Page 408: 14

Answer

The equilibrium temperature will be $18.5~^{\circ}C$

Work Step by Step

Let $T_e$ be the equilibrium temperature. The heat energy lost by the copper will be equal in magnitude to the heat energy gained by the aluminum and the water. Therefore: $m_c~c_c~(T_c-T_e) = m_w~c_w~(T_e-T_w)+m_a~c_a~(T_e-T_a)$ $T_e~(m_c~c_c+m_w~c_w+m_a~c_a) = m_c~c_c~T_c+m_w~c_w~T_w+m_a~c_a~T_a$ $T_e = \frac{m_c~c_c~T_c+m_w~c_w~T_w+m_a~c_a~T_a}{m_c~c_c+m_w~c_w+m_a~c_a}$ $T_e = \frac{(0.265~kg)(390~J/kg~C^{\circ})(245^{\circ}C)+(0.825~kg)(4186~J/kg~C^{\circ})(12.0^{\circ}C)+(0.145~kg)(900~J/kg~C^{\circ})(12.0^{\circ}C)}{(0.265~kg)(390~J/kg~C^{\circ})+(0.825~kg)(4186~J/kg~C^{\circ})+(0.145~kg)(900~J/kg~C^{\circ})}$ $T_e = 18.5~^{\circ}C$ The equilibrium temperature will be $18.5~^{\circ}C$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.