Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 15 - Fluids and Elasticity - Exercises and Problems - Page 436: 25


The reading on the top pressure gauge is 110 kPa

Work Step by Step

We can use Bernoulli's equation to find the reading $P_2$ on the top pressure gauge. We can use $\rho = 900~kg/m^3$ for the density of oil. $P_2 +\frac{1}{2}\rho v_2^2+\rho g h_2 = P_1 +\frac{1}{2}\rho v_1^2+\rho g h_1$ $P_2 = P_1 +\frac{1}{2}\rho (v_1^2-v_2^2)+\rho g (h_1-h_2)$ $P_2 = (2\times 10^5~Pa) +\frac{1}{2}(900~kg/m^3) [(2.0~m/s)^2-(3.0~m/s)^2]+(900~kg/m^3)(9.80~m/s^2)(-10~m)$ $P_2 = (2\times 10^5~Pa) -(2250~Pa)-(88,200~Pa)$ $P_2 = 1.1\times 10^5~Pa = 110~kPa$ The reading on the top pressure gauge is 110 kPa.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.