Physics (10th Edition)

Published by Wiley
ISBN 10: 1118486897
ISBN 13: 978-1-11848-689-4

Chapter 6 - Work and Energy - Problems - Page 170: 70

Answer

$\theta=2^o$

Work Step by Step

We call the force of the engine when it goes up $F_u$ and when it goes down $F_d$. We have $$P_{up}-P_{down}=47hp=3.5\times10^4W$$ $$(F_{u}-F_{d})v=3.5\times10^4W$$ We know $v=27m/s$, so $$F_{u}-F_{d}=1.3\times10^3N (1)$$ - When the car goes up: We call the force of the engine when it goes up $F_u$ and the combined force of air resistance and friction $R$, both of which influence the car's motion. $mg\sin\theta$ influences the car's motion, too, by opposing it. The car goes at a constant velocity, so $\sum F=0$ $$F_u-R-mg\sin\theta=0(2)$$ - When the car goes down: We call the force of the engine when it goes down $F_d$, which propels the motion. $mg\sin\theta$, this time, supports the car's downward motion. $R$ still opposes it. Similarly, here $\sum F=0$ $$F_d+mg\sin\theta-R=0 (3)$$ Subtract (3) from (2): $$F_u-F_d-2mg\sin\theta=0$$ We know $F_{u}-F_{d}=1.3\times10^3N$ and $m=1900kg$, so $$\sin\theta=0.035$$ $$\theta=2^o$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.