Physics (10th Edition)

Published by Wiley
ISBN 10: 1118486897
ISBN 13: 978-1-11848-689-4

Chapter 2 - Kinematics in One Dimension - Problems - Page 52: 85

Answer

$$11.1 s$$

Work Step by Step

\begin{aligned} &v_{S p \text { reder }}(t+0.800 s)=x_{S p e c d e r}\\ &=>(42.0 \mathrm{m} / \mathrm{s})(t+0.800 \mathrm{s})=x_{S p \operatorname{ped} e r}\\ &v_{0, \text { Policecar }}(0.800 s)+v_{0, \text { Police }} \operatorname{car} t+\frac{1}{2} a t^{2}=x_{\text {Police car }}\\ &=>(18.0 \mathrm{m} / \mathrm{s})(t+0.800 \mathrm{s})+(18.0 \mathrm{m} / \mathrm{s}) t+\frac{1}{2}\left(5.00 \mathrm{m} / \mathrm{s}^{2}\right) t^{2}=x_{\text {Police } ~ c a r ~}\\ &\text { The two displacements equal }\\ &==>(42.0 \mathrm{m} / \mathrm{s})(t+0.800 \mathrm{s})=(18.0 \mathrm{m} / \mathrm{s})(0.800 \mathrm{s}) t+\frac{1}{2}\left(5.00 \mathrm{m} / \mathrm{s}^{2}\right) t^{2}\left(2.50 \mathrm{m} / \mathrm{s}^{2}\right) t^{2}-\\ &(24.0 \mathrm{m} / \mathrm{s}) t-19.2 \mathrm{m}=0\\ &t=\frac{-(-24.0 m / s) \pm \sqrt{(-24.0 m / s)^{2}-4\left(2.50 m / s^{2}\right)(-19.2 m)}}{2\left(2.50 m / s^{2}\right)}\\ &=>10.3 \mathrm{s}=t \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.