Physics (10th Edition)

Published by Wiley
ISBN 10: 1118486897
ISBN 13: 978-1-11848-689-4

Chapter 2 - Kinematics in One Dimension - Problems - Page 52: 78

Answer

\begin{array}{l} 3.0 \times 10^{2} \text {days} \\ +1.04 \times 10^{-4} \mathrm{m} / \mathrm{s}^{2} \end{array}

Work Step by Step

The time $\Delta t$ that it takes for the spacecraft to change its velocity by an amount of $+2700 \mathrm{m} / \mathrm{s}=\Delta v$ is: $\frac{\Delta v}{a}=\Delta t$ $=>\frac{+2700 \mathrm{m} / \mathrm{s}}{+9.0 \frac{\mathrm{m} / \mathrm{s}}{\mathrm{d} a y}}=\Delta t$ $=>3.0 \times 10^{2}=\Delta t$days Thus, the acceleration of the spacecraft (in $m / s^{2}$ ) is: $\frac{\Delta v}{t}=a$ $=>\frac{+9.0 \mathrm{m} / \mathrm{s}}{(1 \mathrm{day})\left(\frac{24 \mathrm{hr}}{1 \mathrm{day}}\right)\left(\frac{3600 \mathrm{s}}{1 \mathrm{hr}}\right)}=a$ $=>+1.04 \times 10^{-4} \mathrm{m} / \mathrm{s}^{2}=a$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.