Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 29 - Magnetic Fields Due to Currents - Problems - Page 862: 65

Answer

$r = 1.28~mm$

Work Step by Step

We can find an expression for the enclosed current inside a loop of radius $r$, where $r \lt 8.00~mm$: $i_{enc} = \frac{\pi~r^2}{\pi~(0.00800~m)^2}~(25.0~A) = (390,625~A/m^2)~r^2$ We can use Ampere's law to find $r$: $\int~B\cdot ds = \mu_0~i_{enc}$ $B\cdot 2\pi~r = (\mu_0)~(390,625~A/m^2)~r^2$ $B = \frac{(\mu_0)~(390,625~A/m^2)~r^2}{2\pi~r} = 1.00\times 10^{-4}~T$ $\frac{(\mu_0)~(390,625~A/m^2)~r}{2\pi} = 1.00\times 10^{-4}~T$ $r = \frac{(1.00\times 10^{-4}~T)(2\pi)}{(\mu_0)~(390,625~A/m^2)}$ $r = \frac{(1.00\times 10^{-4}~T)(2\pi)}{(4\pi\times 10^{-7}~H/m)~(390,625~A/m^2)}$ $r = 0.00128~m$ $r = 1.28~mm$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.