Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 22 - Electric Fields - Problems - Page 655: 35

Answer

$z = 0.346~m$

Work Step by Step

We can write an expression for the electric field due to a disk of charge: $E = \frac{\sigma}{2\epsilon_0}(1-\frac{z}{\sqrt{z^2+R^2}})$ We can find an expression for the electric field at the center of the disk: $E = \frac{\sigma}{2\epsilon_0}(1-\frac{z}{\sqrt{z^2+R^2}})$ $E = \frac{\sigma}{2\epsilon_0}(1-\frac{0}{\sqrt{0^2+R^2}})$ $E = \frac{\sigma}{2\epsilon_0}$ We can find $z$ when $~~E = \frac{1}{2}\times \frac{\sigma}{2\epsilon_0}$: $E = \frac{\sigma}{2\epsilon_0}(1-\frac{z}{\sqrt{z^2+R^2}}) = \frac{1}{2}\times \frac{\sigma}{2\epsilon_0}$ $(1-\frac{z}{\sqrt{z^2+R^2}}) = \frac{1}{2}$ $\frac{z}{\sqrt{z^2+R^2}} = \frac{1}{2}$ $2z = \sqrt{z^2+R^2}$ $4z^2 = z^2+R^2$ $3z^2 = R^2$ $z = \frac{R}{\sqrt{3}}$ $z = \frac{0.600~m}{\sqrt{3}}$ $z = 0.346~m$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.