Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 22 - Electric Fields - Problems - Page 655: 24d

Answer

$E = 3.46\times 10^7~N/C$

Work Step by Step

We can find the value of $z$ where the electric field is a maximum: $E = \frac{Qz}{4\pi~\epsilon_0~(z^2+R^2)^{3/2}}$ $\frac{dE}{dz} = \frac{(Q)[4\pi~\epsilon_0~(z^2+R^2)^{3/2}]-(Qz)(3/2)[4\pi~\epsilon_0~(z^2+R^2)^{1/2}](2z)}{4\pi~\epsilon_0~(z^2+R^2)^{3/2}} = 0$ $(Q)[4\pi~\epsilon_0~(z^2+R^2)^{3/2}] = (Qz)(3/2)[4\pi~\epsilon_0~(z^2+R^2)^{1/2}](2z)$ $z^2+R^2 = 3z^2$ $2z^2 = R^2$ $z = \frac{R}{\sqrt{2}}$ We can find the maximum magnitude: $E = \frac{Qz}{4\pi~\epsilon_0~(z^2+R^2)^{3/2}}$ $E = \frac{Q\frac{R}{\sqrt{2}}}{4\pi~\epsilon_0~[(\frac{R}{\sqrt{2}})^2+R^2]^{3/2}}$ $E = \frac{Q~R}{4~\sqrt{2}~\pi~\epsilon_0~(3R^2/2)^{3/2}}$ $E = \frac{Q}{4~\sqrt{2}~\pi~\epsilon_0~(1.5)^{3/2}~R^2}$ $E = \frac{4.00\times 10^{-6}~C}{(4~\sqrt{2}~\pi)~(8.854\times 10^{-12}~F/m)~(1.5)^{3/2}~(0.0200~m)^2}$ $E = 3.46\times 10^7~N/C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.