Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 22 - Electric Fields - Problems - Page 655: 31d

Answer

$E = 1.52\times 10^{-8}~N/C$

Work Step by Step

In part (a), we found that $~~\lambda = -5.19\times 10^{-14}~C/m$ We can find an expression for the magnitude of the electric field at $P$: $dE = \frac{\vert dq \vert}{4\pi~\epsilon_0~s^2}$ $dE = \int_{a}^{L+a}\frac{\vert \lambda \vert~ds}{4\pi~\epsilon_0~s^2}$ $E = -\frac{\vert \lambda \vert}{4\pi~\epsilon_0}~(\frac{1}{s})\Big \vert_{a}^{L+a}$ $E = -\frac{\vert \lambda \vert}{4\pi~\epsilon_0}~(\frac{1}{L+a}-\frac{1}{a})$ $E = \frac{\vert \lambda \vert}{4\pi~\epsilon_0}~(\frac{1}{a} - \frac{1}{L+a})$ We can find the magnitude of the electric field at $P$: $E = \frac{\vert \lambda \vert}{4\pi~\epsilon_0}~(\frac{1}{a} - \frac{1}{L+a})$ $E = \frac{(5.19\times 10^{-14}~C/m)}{(4\pi)~(8.854\times 10^{-12}~F/m)}~(\frac{1}{50~m} - \frac{1}{50.0815~m})$ $E = 1.52\times 10^{-8}~N/C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.