Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 12 - Equilibrium and Elasticity - Problems - Page 346: 21a

Answer

$T = 6630~N$

Work Step by Step

We can consider the net torque on the strut about a rotation axis at the hinge. The tension holding the block, the weight of the strut, and the vertical component of $T$ contribute to the clockwise torque. There is an opposing counterclockwise torque from the horizontal component of $T$. Let $d$ be the length of the strut. We can find $T$: $\tau_{net} = 0$ $(d~sin~\theta)(T~cos~\phi)-(d~cos~\theta)(T~sin~\phi)-(\frac{d}{2}~cos~\theta)(45.0~kg)(9.8~m/s^2)-(d~cos~\theta)(225~kg)(9.8~m/s^2) = 0$ $(sin~45^{\circ})(T~cos~\phi)-(cos~45^{\circ})(T~sin~\phi) = (\frac{1}{2}~cos~45^{\circ})(45.0~kg)(9.8~m/s^2)+(cos~45^{\circ})(225~kg)(9.8~m/s^2)$ $T~(cos~\phi-sin~\phi) = (\frac{1}{2})(45.0~kg)(9.8~m/s^2)+(225~kg)(9.8~m/s^2)$ $T = \frac{(\frac{1}{2})(45.0~kg)(9.8~m/s^2)+(225~kg)(9.8~m/s^2)}{cos~\phi-sin~\phi}$ $T = \frac{(\frac{1}{2})(45.0~kg)(9.8~m/s^2)+(225~kg)(9.8~m/s^2)}{cos~30.0^{\circ}-sin~30.0^{\circ}}$ $T = 6630~N$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.