College Physics (7th Edition)

Published by Pearson
ISBN 10: 0-32160-183-1
ISBN 13: 978-0-32160-183-4

Chapter 27 - Quantum Physics - Learning Path Questions and Exercises - Exercises - Page 936: 25

Answer

(a) stopping potential $V_{0} =0.625V$ (b) work function $\phi_{0}=2.3348eV$ (c) Energy of red light $E=1.77589eV$ is lower than the work function $\phi_{0}=2.3348eV$ of metal. So electron will not come out of the surface so there is no question of stopping potential.

Work Step by Step

wavelength of the incident blue light $\lambda= 420nm=420\times10^{-9}m=4.2\times10^{-7}m$ $E=hf=\frac{hc}{\lambda}$ putting $h=6.63\times10^{-34} J.s$, $c=3\times10^{8}m/s$,$\lambda=4.2\times10^{-7}m$ $E=hf=\frac{6.63\times10^{-34} J.s\times3\times10^{8}m/s}{4.2\times10^{-7}m}=4.7357\times10^{-19} J$ $1.6\times10^{-19} J$ is equal to $1eV$ so $4.7357\times10^{-19} J$ is equal to $\frac{4.7357\times10^{-19}}{1.6\times10^{-19}}eV=2.9598eV$ $E=hf=4.7357\times10^{-19} J=2.9598eV$ .....equation(1) (a) Calculation of stopping voltage given that Maximum kinetic energy of electron is $K_{max}=1.0\times10^{-19}J$ $1.6\times10^{-19} J$ is equal to $1eV$ so $1.0\times10^{-19} J$ is equal to $\frac{1.0\times10^{-19}}{1.6\times10^{-19}}eV=0.625eV$.......equation(2) from equation 27.5 $K_{max}=eV_{0}$ so stopping potential $V_{0} =\frac{K_{max}}{e}=\frac{0.625eV}{e}=0.625V$ (b) Calculation of work function From equation 27.7 $hf= K_{max} + \phi_{0}$ $\phi_{0}=hf- K_{max}$ putting the values from equation (1) and (2) $\phi_{0}=2.9598eV -0.625eV$ $\phi_{0}=2.3348eV$ (c) If red light is used instead. wavelength of the incident Red light $\lambda= 700nm=700\times10^{-9}m=7\times10^{-7}m$ $E=hf=\frac{hc}{\lambda}$ putting $h=6.63\times10^{-34} J.s$, $c=3\times10^{8}m/s$,$\lambda=7\times10^{-7}m$ $E=hf=\frac{6.63\times10^{-34} J.s\times3\times10^{8}m/s}{7\times10^{-7}m}=2.84143\times10^{-19} J$ $1.6\times10^{-19} J$ is equal to $1eV$ so $2.84143\times10^{-19} J$ is equal to $\frac{2.84143\times10^{-19}}{1.6\times10^{-19}}eV=1.77589eV$ $E=hf=2.84143\times10^{-19} J=1.77589eV$ Energy of red light $E=1.77589eV$ is lower than the work function $\phi_{0}=2.3348eV$ of metal. So electron will not come out of the surface so there is no question of stopping potential. From equation 27.7 $hf= K_{max} + \phi_{0}$ $K_{max}=hf-\phi_{0}$ $K_{max}=1.77589eV-2.3348eV$=$-0.5589eV$ since kinetic energy is negative so there is no question of stopping potential.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.