College Physics (7th Edition)

Published by Pearson
ISBN 10: 0-32160-183-1
ISBN 13: 978-0-32160-183-4

Chapter 27 - Quantum Physics - Learning Path Questions and Exercises - Exercises - Page 936: 22

Answer

(a) speed $v=6.02356\times10^{5}m/s$ (b) speed $v=0$,elecrron will come out with zero speed. (c) electrons will not come out of the surface.

Work Step by Step

From equation 27.8 we know that Cutoff frequency $f_{0}= \frac{\phi_{0}}{h}$ so work function $\phi_{0}= hf_{0}=\frac{hc}{\lambda_{0}}$ If the wavelength of incident light is $\lambda$ and frequency is $f$ the energy of incident light will be $E=hf=\frac{hc}{\lambda}$ From equation 27.7 $hf= K_{max} + \phi_{0}$ $K_{max}=hf- \phi_{0}=\frac{hc}{\lambda}-\frac{hc}{\lambda_{0}}$........equation(1) Also maximum kinetic energy of photoelectron is given by $K_{max}=\frac{1}{2}mv^{2}$ so $v=\sqrt \frac{2K_{max}}{m}$.................equation(2) (a) light of wavelength $\lambda= 300nm=300\times10^{-9}m=3\times10^{-7}m$ $h=6.63\times10^{-34} J.s$, $c=3\times10^{8}m/s$, $\lambda_{0}= 400nm=400\times10^{-9}m=4\times10^{-7}m$ putting values in equation (1) $K_{max}=\frac{hc}{\lambda}-\frac{hc}{\lambda_{0}}=\frac{6.63\times10^{-34} J.s\times3\times10^{8}m/s}{3\times10^{-7}m}-\frac{6.63\times10^{-34} J.s\times3\times10^{8}m/s}{4\times10^{-7}m}$ $K_{max}=6.63\times10^{-19} J-4.9725\times10^{-19} J=1.6575\times10^{-19} J$ mass of electron $m=9.1\times10^{-31}kg $ putting this value in equation(2) $v=\sqrt \frac{2K_{max}}{m}=\sqrt \frac{2\times1.6575\times10^{-19} J}{9.1\times10^{-31}kg }=6.02356\times10^{5}m/s$ (b) light of wavelength $\lambda= 400nm=400\times10^{-9}m=3\times10^{-7}m$ $h=6.63\times10^{-34} J.s$, $c=3\times10^{8}m/s$, $\lambda_{0}= 400nm=400\times10^{-9}m=4\times10^{-7}m$ putting values in equation (1) $K_{max}=\frac{hc}{\lambda}-\frac{hc}{\lambda_{0}}=\frac{6.63\times10^{-34} J.s\times3\times10^{8}m/s}{4\times10^{-7}m}-\frac{6.63\times10^{-34} J.s\times3\times10^{8}m/s}{4\times10^{-7}m}$ $K_{max}=0$, so speed $v=\sqrt \frac{2K_{max}}{m}=0$ (c) light of wavelength $\lambda= 500nm=500\times10^{-9}m=5\times10^{-7}m$ $h=6.63\times10^{-34} J.s$, $c=3\times10^{8}m/s$, $\lambda_{0}= 400nm=400\times10^{-9}m=4\times10^{-7}m$ putting values in equation (1) $K_{max}=\frac{hc}{\lambda}-\frac{hc}{\lambda_{0}}=\frac{6.63\times10^{-34} J.s\times3\times10^{8}m/s}{5\times10^{-7}m}-\frac{6.63\times10^{-34} J.s\times3\times10^{8}m/s}{4\times10^{-7}m}$ $K_{max}=3.978\times10^{-19} J-4.9725\times10^{-19} J=-0.9945\times10^{-19} J$ since $K_{max}$ is negative quantity electrons will not come out of the surface.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.