Essential University Physics: Volume 1 (4th Edition)

Published by Pearson
ISBN 10: 0-134-98855-8
ISBN 13: 978-0-13498-855-9

Chapter 8 - Exercises and Problems - Page 147: 36

Answer

$420\space km/s$

Work Step by Step

Here we use the principle of conservation of mechanical energy. Final mechanical energy = Initial mechanical energy $K+U=K_{0}+U_{0}$ $-\frac{GM_{S}m}{r}+\frac{1}{2}mV^{2}=\frac{1}{2}mV_{0}^{2}-\frac{GM_{S}m}{R}$ Where m is mass of the material, r is the distance to the final position from the sun's center & $R$ is the distance to the initial position from the sun's center, V is the speed at the earth orbit, $V_{0}$ is the initial speed. $V^{2}=V_{0}^{2}+2GM_{S}(\frac{1}{r}-\frac{1}{R})$ $V^{2}=(550\times10^{3}m/s)^{2}+2\times6.67\times10^{-11}Nm^{2}/kg^{2}\times1.99\times10^{30}(\frac{1}{150\times10^{9}m}-\frac{1}{3\times696\times10^{6}m})$ $V^{2}=3025\times10^{8}m^{2}/s^{2}+\frac{2.67\times10^{20}}{10^{6}}(6.7\times10^{-6}-479\times10^{-6})m^{2}/s^{2}$ $V^{2}=1764\times10^{8}m^{2}/s^{2}$ $V=42\times10^{4}m/s=420\space km/s$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.