Essential University Physics: Volume 1 (4th Edition)

Published by Pearson
ISBN 10: 0-134-98855-8
ISBN 13: 978-0-13498-855-9

Chapter 8 - Exercises and Problems - Page 147: 31

Answer

$(a)\space 20130\space km$ $(b)\space 3.875\space km/s$

Work Step by Step

(a) Here we use the equation $T=\sqrt {\frac{4\pi^{2}r^{3}}{GM_{E}}}$ to find the orbital period. where, T - Orbital period, V - speed of the satellite, $M_{E}$ - the mass of the earth, G - universal gravitational constant, r - radius of the orbit. $T=\sqrt {\frac{4\pi^{2}r^{3}}{GM_{E}}}$ ; Let's plug known values into this equation. $T= 2\pi \sqrt {\frac{r^{3}}{GM_{E}}}$ $11.97\space h(\frac{3600\space s}{h})=2\pi \sqrt {\frac{r^{3}}{6.67\times10^{-11}\space Nm^{2}/kg^{2}\times5.97\times10^{24}\space kg}}$ $47032164\times39.8\times10^{13}\space m^{3}= r^{3}$ $26551721\space m= r$ The altitude of the satellite (h) = r - radius of the earth $h=26.5\times10^{6}\space m-6.37\times10^{6}\space m$ $h=20.13\times10^{6}\space m=20130\space km$ (a) Here we use the equation $V=\sqrt {\frac{GM_{E}}{r}}$ to find the speed of the satellite $V=\sqrt {\frac{GM_{E}}{r}}$; Let's plug known values into this equation $V=\sqrt {\frac{6.67\times10^{-11}\space Nm^{2}/kg^{2}\times5.97\times10^{24}\space kg}{26.5\times10^{6}\space m}}$ $V=\sqrt {\frac{39.8\times10^{13}}{26.5\times10^{6}}}\space m/s= 3875.4\space m/s=3.875\space km/s$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.