Answer
$(a)\space 11.93\space m/s$
$(b)\space It's\space structure\space in\space between$
Work Step by Step
Please see the attached image first.
(a )Here we use the conservation of mechanical energy.
Kinetic energy + Mechanical energy = Constant
$Mgh+0=\frac{1}{2}MV^{2}+\frac{1}{2}I\omega^{2}$
Let's plug known values into this equation.
$29.5kg\times9.8m/s^{2}\times 12.6m=\frac{1}{2}\times29.5kg\times V^{2}+\frac{1}{2}\times3.58\space kgm^{2}\times\frac{V^{2}}{(0.406\space m)^{2}}$
$3642.66\space kgm^{2}/s^{2}=(14.75\space kg + 10.86\space kg)V^{2}$
$142.26\space m^{2}/s^{2}=V^{2}$
11.93 m/s = V
(b) We can write, $I=x\times mr^{2},$ where x - constant & let's find the value of x
$3.58\space kgm^{2}=x\times29.5\space kg\times (0.406\space m)^{2}$
$0.73=x$
$x\approx\frac{7}{10}$
$\frac{1}{2}\lt x\lt 1$ ; Therefore its structure in between