Answer
$Ka (HOCN) = 3.554\times 10^{- 4}$
Work Step by Step
1. Calculate the hydronium concentration.
$[H_3O^+] = 10^{-pH}$
$[H_3O^+] = 10^{- 2.67}$
$[H_3O^+] = 2.138 \times 10^{- 3}M$
2. Drawing the equilibrium (ICE) table, we get these concentrations at equilibrium:** The image is in the end of this answer.
-$[H_3O^+] = [OCN^-] = x = 2.138 \times 10^{-3}M$
-$[HOCN] = [HOCN]_{initial} - x$
3. Write the Ka equation, and find its value:
$Ka = \frac{[H_3O^+][OCN^-]}{ [HOCN]}$
$Ka = \frac{x^2}{[InitialHOCN] - x}$
$Ka = \frac{( 2.138\times 10^{- 3})^2}{ 0.015- 2.138\times 10^{- 3}}$
$Ka = \frac{ 4.571\times 10^{- 6}}{ 0.01286}$
$Ka = 3.554\times 10^{- 4}$
![](https://gradesaver.s3.amazonaws.com/uploads/solution/69594a01-16be-4dbb-97a5-2ea3c9daa0ef/steps_image/small_1532007640.png?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAJVAXHCSURVZEX5QQ%2F20250118%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20250118T180014Z&X-Amz-Expires=900&X-Amz-SignedHeaders=host&X-Amz-Signature=4510dda4ed16f96e07ac633cff10186e8bae35e48f5a707f472349dfa3f078ed)