Chemistry: The Molecular Science (5th Edition)

Published by Cengage Learning
ISBN 10: 1285199049
ISBN 13: 978-1-28519-904-7

Chapter 14 - Acids and Bases - Questions for Review and Thought - Topical Questions - Page 652c: 62

Answer

$pH = 7.449$

Work Step by Step

1. Drawing the equilibrium (ICE) table, we get these concentrations at equilibrium:** The image is in the end of this answer. -$[OH^-] = [C_{10}H_{15}N{H_3}^+] = x$ -$[C_{10}H_{15}NH_2] = [C_{10}H_{15}NH_2]_{initial} - x = 1 \times 10^{- 3} - x$ For approximation, we consider: $[C_{10}H_{15}NH_2] = 1 \times 10^{- 3}M$ 2. Now, use the Kb value and equation to find the 'x' value. $Kb = \frac{[OH^-][C_{10}H_{15}N{H_3}^+]}{ [C_{10}H_{15}NH_2]}$ $Kb = 7.9 \times 10^{- 11}= \frac{x * x}{ 1\times 10^{- 3}}$ $Kb = 7.9 \times 10^{- 11}= \frac{x^2}{ 1\times 10^{- 3}}$ $ 7.9 \times 10^{- 14} = x^2$ $x = 2.811 \times 10^{- 7}$ Percent ionization: $\frac{ 2.811 \times 10^{- 7}}{ 1\times 10^{- 3}} \times 100\% = 0.02811\%$ %ionization < 5% : Right approximation. Therefore: $[OH^-] = [C_{10}H_{15}N{H_3}^+] = x = 2.811 \times 10^{- 7}M $ $[C_{10}H_{15}NH_2] \approx 0.001M$ 3. Calculate the pH. $pOH = -log[OH^-]$ $pOH = -log( 2.811 \times 10^{- 7})$ $pOH = 6.551$ $pH + pOH = 14$ $pH + 6.551 = 14$ $pH = 7.449$
Small 1532011374
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.