Chemistry (4th Edition)

Published by McGraw-Hill Publishing Company
ISBN 10: 0078021529
ISBN 13: 978-0-07802-152-7

Chapter 16 - Questions and Problems - Page 772: 16.63

Answer

Original acid molarity : $2.329 \times 10^{-3}M$

Work Step by Step

1. Find $[H_3O^+]:$ $[H_3O^+] = 10^{-pH}$ $[H_3O^+] = 10^{- 3.26}$ $[H_3O^+] = 5.495 \times 10^{- 4}M$ 2. Drawing the equilibrium (ICE) table we get these concentrations at equilibrium:** The image is in the end of this answer. -$[H_3O^+] = [HCOO^-] = x$ -$[HCOOH] = [HCOOH]_{initial} - x$ 3. Now, use the Ka and x values and equation to find the initial concentration value. $Ka = \frac{[H_3O^+][HCOO^-]}{ [Initial HCOOH] - x}$ $ 1.7\times 10^{- 4}= \frac{[x^2]}{ [Initial HCOOH] - x}$ $ 1.7\times 10^{- 4}= \frac{( 5.5\times 10^{- 4})^2}{[Initial HCOOH] - 5.5\times 10^{- 4}}$ $[Initial HCOOH] - 5.5\times 10^{- 4} = \frac{ 3.025\times 10^{- 7}}{ 1.7\times 10^{- 4}}$ $[Initial HCOOH] - 5.5\times 10^{- 4} = 1.779\times 10^{- 3}$ $[Initial HCOOH] = 1.779\times 10^{- 3} + 5.5\times 10^{- 4}$ $[Initial HCOOH] = 2.329\times 10^{- 3}M$
Small 1531319314
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.