Answer
(a) $x = t^3+1$
$y = t^3-1$
We can see the graph below.
(b) $y = x-2$
Work Step by Step
(a) $x = t^3+1$
$y = t^3-1$
When $t = -4$:
$x = (-4)^3+1 = -63$
$y = (-4)^3-1 = -65$
When $t = -2$:
$x = (-2)^3+1 = -7$
$y = (-2)^3-1 = -9$
When $t = 0$:
$x = (0)^3+1 = 1$
$y = (0)^3-1 = -1$
When $t = 2$:
$x = (2)^3+1 = 9$
$y = (2)^3-1 = 7$
When $t = 4$:
$x = (4)^3+1 = 65$
$y = (4)^3-1 = 63$
We can see the graph below.
(b) $x = t^3+1$
$t^3 = x-1$
We can replace this expression for $t^3$ in the equation for $y$:
$y = t^3-1$
$y = (x-1) - 1$
$y = x-2$