Trigonometry (10th Edition)

Published by Pearson
ISBN 10: 0321671775
ISBN 13: 978-0-32167-177-6

Chapter 8 - Complex Numbers, Polar Equations, and Parametric Equations - Section 8.6 Parametric Equations, Graphs, and Applications - 8.6 Exercises - Page 398: 12

Answer

(a) $x = \sqrt{5}~sin~t$ $y = \sqrt{3}~cos~t$ We can see the graph below. (b) $\frac{x^2}{5}+\frac{y^2}{3} = 1$

Work Step by Step

(a) $x = \sqrt{5}~sin~t$ $y = \sqrt{3}~cos~t$ When $t = 0$: $x = \sqrt{5}~sin~0 = 0$ $y = \sqrt{3}~cos~0 = \sqrt{3}$ When $t = \frac{\pi}{6}$: $x = \sqrt{5}~sin~\frac{\pi}{6} = \frac{\sqrt{5}}{2}$ $y = \sqrt{3}~cos~\frac{\pi}{6} = \frac{3}{2}$ When $t = \frac{\pi}{4}$: $x = \sqrt{5}~sin~\frac{\pi}{4} = \frac{\sqrt{10}}{2}$ $y = \sqrt{3}~cos~\frac{\pi}{4} = \frac{\sqrt{6}}{2}$ When $t = \frac{\pi}{3}$: $x = \sqrt{5}~sin~\frac{\pi}{3} = \frac{\sqrt{15}}{2}$ $y = \sqrt{3}~cos~\frac{\pi}{3} = \frac{\sqrt{3}}{2}$ When $t = \frac{\pi}{2}$: $x = \sqrt{5}~sin~\frac{\pi}{2} = \sqrt{5}$ $y = \sqrt{3}~cos~\frac{\pi}{2} = 0$ When $t = \frac{2\pi}{3}$: $x = \sqrt{5}~sin~\frac{2\pi}{3} = \frac{\sqrt{15}}{2}$ $y = \sqrt{3}~cos~\frac{2\pi}{3} = -\frac{\sqrt{3}}{2}$ When $t = \pi$: $x = \sqrt{5}~sin~\pi = 0$ $y = \sqrt{3}~cos~\pi = -\sqrt{3}$ When $t = \frac{4\pi}{3}$: $x = \sqrt{5}~sin~\frac{4\pi}{3} = -\frac{\sqrt{15}}{2}$ $y = \sqrt{3}~cos~\frac{4\pi}{3} = -\frac{\sqrt{3}}{2}$ When $t = \frac{3\pi}{2}$: $x = \sqrt{5}~sin~\frac{3\pi}{2} = -\sqrt{5}$ $y = \sqrt{3}~cos~\frac{3\pi}{2} = 0$ We can see the graph below. (b) $x = \sqrt{5}~sin~t$ $y = \sqrt{3}~cos~t$ $\frac{x^2}{5}+\frac{y^2}{3} = \frac{( \sqrt{5}~sin~t)^2}{5}+\frac{(\sqrt{3}~cos~t)^2}{3}$ $\frac{x^2}{5}+\frac{y^2}{3} = \frac{5~sin^2~t}{5}+\frac{3~cos^2~t}{3}$ $\frac{x^2}{5}+\frac{y^2}{3} = sin^2~t+cos^2~t$ $\frac{x^2}{5}+\frac{y^2}{3} = 1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.