Trigonometry (10th Edition)

Published by Pearson
ISBN 10: 0321671775
ISBN 13: 978-0-32167-177-6

Chapter 5 - Trigonometric Identities - Section 5.2 Verifying Trigonometric Identities - 5.2 Exercises - Page 203: 76

Answer

$$\sin^2x(1+\cot x)+\cos^2x(1-\tan x)+\cot^2x=\csc^2x$$ We prove the expression to be an identity by simplifying the left side.

Work Step by Step

$$\sin^2x(1+\cot x)+\cos^2x(1-\tan x)+\cot^2x=\csc^2x$$ We start with the left side. $$A=\sin^2x(1+\cot x)+\cos^2x(1-\tan x)+\cot^2x$$ 1) First, $\cot x=\frac{\cos x}{\sin x}$ So, $$\sin^2x(1+\cot x)=\sin^2x(1+\frac{\cos x}{\sin x})=\sin^2x\times\frac{\sin x+\cos x}{\sin x}=\sin x(\sin x+\cos x)$$ 2) Second, $\tan x=\frac{\sin x}{\cos x}$ So, $$\cos^2x(1-\tan x)=\cos^2x(1-\frac{\sin x}{\cos x})=\cos^2x\times\frac{\cos x-\sin x}{\cos x}=\cos x(\cos x-\sin x)$$ Now applying them to $A$: $$A=\sin x(\sin x+\cos x)+\cos x(\cos x-\sin x)+\cot^2x$$ $$A=\sin^2x+\sin x\cos x+\cos^2 x-\sin x\cos x+\cot^2x$$ $$A=\sin^2 x+\cos^2x+\cot^2x $$ $$A=1+\cot^2x$$ (Pythagorean Identity: $\sin^2x+\cos^2x=1$) $$A=\csc^2x$$ (Pythagorean Identity: $1+\cot^2x=\csc^2x$) Therefore, 2 sides are equal and the expression is an identity.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.