Trigonometry (10th Edition)

Published by Pearson
ISBN 10: 0321671775
ISBN 13: 978-0-32167-177-6

Chapter 5 - Trigonometric Identities - Section 5.2 Verifying Trigonometric Identities - 5.2 Exercises - Page 203: 74

Answer

$$\frac{1-\cos\theta}{1+\cos\theta}=2\csc^2\theta-2\csc\theta\cot\theta-1$$ The expression is proved below to be an identity.

Work Step by Step

$$\frac{1-\cos\theta}{1+\cos\theta}=2\csc^2\theta-2\csc\theta\cot\theta-1$$ We actually figure out from exercise 73 that $$\frac{1-\cos x}{1+\cos x}=\csc^2x-2\csc x\cot x+\cot^2x$$ Applying here, we have the identity $$\frac{1-\cos\theta}{1+\cos\theta}=\csc^2\theta-2\csc\theta\cot\theta+\cot^2\theta$$ That means to prove the requirement of the exercise, we only need to prove $$2\csc^2\theta-2\csc\theta\cot\theta-1=\csc^2\theta-2\csc\theta\cot\theta+\cot^2\theta\hspace{1cm}(1)$$ Thus, we would start with the left side. $$A=2\csc^2\theta-2\csc\theta\cot\theta-1$$ $$A=\csc^2\theta-2\csc\theta\cot\theta+(\csc^2\theta-1)$$ - From Pythagorean Identity: $\csc^2\theta=\cot^2\theta+1$ Replace this into the second $\csc^2\theta$ of $A$: $$A=\csc^2\theta-2\csc\theta\cot\theta+(\cot^2\theta+1-1)$$ $$A=\csc^2\theta-2\csc\theta\cot\theta+\cot^2\theta$$ Therefore, $(1)$ is proved to be an identity. That means $$\frac{1-\cos\theta}{1+\cos\theta}=2\csc^2\theta-2\csc\theta\cot\theta-1$$ is also an identity.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.