Trigonometry (11th Edition) Clone

Published by Pearson
ISBN 10: 978-0-13-421743-7
ISBN 13: 978-0-13421-743-7

Chapter 8 - Test - Page 412: 6a


$\frac{3\sqrt 3}{2}-\frac{3}{2}i$

Work Step by Step

We know that $\cos30^{\circ}=\frac{\sqrt 3}{2}$ and $\sin30^{\circ}=\frac{1}{2}$ Substituting these values in the expression and solving: $3(\cos30^{\circ}+i\sin30^{\circ})=3(\frac{\sqrt 3}{2}-\frac{1}{2}i)=\frac{3\sqrt 3}{2}-\frac{3}{2}i$ Therefore, the rectangular form is $\frac{3\sqrt 3}{2}-\frac{3}{2}i$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.