Trigonometry (11th Edition) Clone

Published by Pearson
ISBN 10: 978-0-13-421743-7
ISBN 13: 978-0-13421-743-7

Chapter 8 - Test - Page 412: 12

Answer

$r = 3~cos~3\theta$ This graph is a rose curve. We can see this graph below:
1531922381

Work Step by Step

$r = 3~cos~3\theta$ When $\theta = 0^{\circ}$, then $r = 3~cos~0^{\circ} = 3$ When $\theta = 20^{\circ}$, then $r = 3~cos~60^{\circ} = 1.5$ When $\theta = 30^{\circ}$, then $r = 3~cos~90^{\circ} = 0$ When $\theta = 60^{\circ}$, then $r = 3~cos~180^{\circ} = -3$ When $\theta = 90^{\circ}$, then $r = 3~cos~270^{\circ} = 0$ When $\theta = 120^{\circ}$, then $r = 3~cos~360^{\circ} = 3$ When $\theta = 180^{\circ}$, then $r = 3~cos~540^{\circ} = -3$ When $\theta = 240^{\circ}$, then $r = 3~cos~720^{\circ} = 3$ When $\theta = 270^{\circ}$, then $r = 3~cos~810^{\circ} = 0$ When $\theta = 300^{\circ}$, then $r = 3~cos~900^{\circ}= -3$ This graph is a rose curve. We can see this graph below:
Small 1531922381
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.