Trigonometry (11th Edition) Clone

Published by Pearson
ISBN 10: 978-0-13-421743-7
ISBN 13: 978-0-13421-743-7

Chapter 8 - Complex Numbers, Polar Equations, and Parametric Equations - Section 8.1 Complex Numbers - 8.1 Exercises - Page 365: 116


$I = \frac{215}{26} + \frac{95}{26} i$

Work Step by Step

For $E=IZ$, where $E=35+55i$ and $Z=6+4i$, $(35+55i)=I(6+4i)$ $I = \frac{(35+55i)}{(6+4i)}$ $I = \frac{(35+55i)(6-4i)}{(6+4i)(6-4i)}$ $I = \frac{(210-140i+330i-220i^2)}{(36-16i^2)}$ $I = \frac{(210+190i+220)}{(36+16)}$ $I = \frac{(430+190i)}{52}$ $I = \frac{215}{26} + \frac{95}{26} i$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.