Trigonometry (11th Edition) Clone

Published by Pearson
ISBN 10: 978-0-13-421743-7
ISBN 13: 978-0-13421-743-7

Chapter 6 - Inverse Circular Functions and Trigonometric Equations - Section 6.1 Inverse Circular Functions - 6.1 Exercises - Page 264: 33



Work Step by Step

Inverse Secant Function: $y=\sec^{-1}x$ or $y=$ arcsec $x$ means that $x=\sec y$, for $0 \leq y \leq \pi, y\displaystyle \neq\frac{\pi}{2}$. ---------------- $\displaystyle \sec 0=\frac{1}{\cos 0}=\frac{1}{1}=1,$ and $0 \leq $0$ \leq \pi,$ 0$\displaystyle \neq\frac{\pi}{2}$, so $y=\sec^{-1}1=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.