Trigonometry (11th Edition) Clone

Published by Pearson
ISBN 10: 978-0-13-421743-7
ISBN 13: 978-0-13421-743-7

Chapter 6 - Inverse Circular Functions and Trigonometric Equations - Section 6.1 Inverse Circular Functions - 6.1 Exercises - Page 264: 20


$-\displaystyle \frac{\pi}{4}$

Work Step by Step

lnverse Tangent Function: $y=\tan^{-1}x$ or $y=$ arctan $x \quad $means that $x=\tan y$, for $-\displaystyle \frac{\pi}{2} < y < \frac{\pi}{2}$. ---------- In the interval$\quad -\displaystyle \frac{\pi}{2} < y < \frac{\pi}{2}$ , we find $y=-\displaystyle \frac{\pi}{4}$ to be such that $\displaystyle \tan(-\frac{\pi}{4})=-1$. So $y=\displaystyle \tan^{-1}(-1)=-\frac{\pi}{4}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.