Answer
Mean:
$μ_X=5$
Standard deviation:
$σ_X=1.581$
Work Step by Step
Mean:
$μ_X=Σ[x.P(x)]=0\times P(0)+1\times P(1)+2\times P(2)+3\times P(3)+4\times P(4)+5\times P(5)+6\times P(6)+7\times P(7)+8\times P(8)+9\times P(9)+10\times P(10)=0\times0.0009766+1\times0.009766+2\times0.04395+3\times0.1172+4\times0.2051+5\times0.2461+6\times0.2051+7\times0.1172+8\times0.04395+9\times0.009766+10\times0.0009766=5$
Standard deviation:
$σ_X=\sqrt {Σ[x^2.P(x)]-μ_X^2}=\sqrt {0^2\times P(0)+1^2\times P(1)+2^2\times P(2)+3^2\times P(3)+4^2\times P(4)+5^2\times P(5)+6^2\times P(6)+7^2\times P(7)+8^2\times P(8)+9^2\times P(9)+10^2\times P(10)-5^2}=\sqrt {0\times0.0009766+1\times0.009766+4\times0.04395+9\times0.1172+16\times0.2051+25\times0.2461+36\times0.2051+49\times0.1172+64\times0.04395+81\times0.009766+100\times0.0009766-25}=1.581$