Statistics: Informed Decisions Using Data (4th Edition)

Published by Pearson
ISBN 10: 0321757270
ISBN 13: 978-0-32175-727-2

Chapter 14 - Section 14.2 - Assess Your Understanding - Applying the Concepts - Page 697: 7d

Answer

Confidence interval: $67.25\lt y\lt68.89$ We are 90% confident that the well-being index composite score of Jane is between 67.25 and 68.89

Work Step by Step

From problem 11 from Section 14.1: $s_e=0.368$ $∑(x_i-x ̅)^2=85.703^2=7345.00$ $x ̅=\frac{5+15+25+35+50+72+105}{7}=43.857$ $n=7$, so: $d.f.=n-2=5$ $level~of~confidence=(1-α).100$% $90$% $=(1-α).100$% $0.9=1-α$ $α=0.1$ $t_{\frac{α}{2}}=t_{0.05}=2.015$ (According to Table VI, for d.f. = 5 and area in right tail = 0.05) $Lower~bound=ŷ -t_{\frac{α}{2}}.s_e\sqrt {1+\frac{1}{n}+\frac{(x^*-x ̅)^2}{∑(x_i-x ̅)^2}}=68.07-2.015\times0.368\sqrt {1+\frac{1}{7}+\frac{(20-43.857)^2}{7345.00}}=67.25$ $Upper~bound=ŷ +t_{\frac{α}{2}}.s_e\sqrt {1+\frac{1}{n}+\frac{(x^*-x ̅)^2}{∑(x_i-x ̅)^2}}=68.07+2.015\times0.368\sqrt {1+\frac{1}{7}+\frac{(20-43.857)^2}{7345.00}}=68.89$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.