Statistics: Informed Decisions Using Data (4th Edition)

Published by Pearson
ISBN 10: 0321757270
ISBN 13: 978-0-32175-727-2

Chapter 14 - Section 14.2 - Assess Your Understanding - Applying the Concepts - Page 697: 10b

Answer

Confidence interval: $36.64\lt y\lt37.39$ We are 95% confident that the mean length of the right tibia of all rats whose right humerus is 25.83 mm is between 36.64 and 37.39 inches.

Work Step by Step

From problem 14 from Section 14.1: $s_e=0.494$ $∑(x_i-x ̅)^2=3.292^2=10.837$ $x ̅=\frac{24.80+24.59+24.59+24.29+23.81+24.87+25.90+26.11+26.63+26.31+26.84}{11}=25.34$ $n=11$, so: $d.f.=n-2=9$ $level~of~confidence=(1-α).100$% $95$% $=(1-α).100$% $0.95=1-α$ $α=0.05$ $t_{\frac{α}{2}}=t_{0.025}=2.262$ (According to Table VI, for d.f. = 9 and area in right tail = 0.025) $Lower~bound=ŷ -t_{\frac{α}{2}}.s_e\sqrt {\frac{1}{n}+\frac{(x^*-x ̅)^2}{∑(x_i-x ̅)^2}}=37.0137-2.262\times0.494\sqrt {\frac{1}{11}+\frac{(25.83-25.34)^2}{10.837}}=36.64$ $Upper~bound=ŷ +t_{\frac{α}{2}}.s_e\sqrt {\frac{1}{n}+\frac{(x^*-x ̅)^2}{∑(x_i-x ̅)^2}}=37.0137+2.262\times0.494\sqrt {\frac{1}{11}+\frac{(25.83-25.34)^2}{10.837}}=37.39$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.