Statistics: Informed Decisions Using Data (4th Edition)

Published by Pearson
ISBN 10: 0321757270
ISBN 13: 978-0-32175-727-2

Chapter 14 - Section 14.2 - Assess Your Understanding - Applying the Concepts - Page 697: 10d

Answer

Confidence interval: $35.83\lt ŷ\lt38.19$ We are 95% confident that the right tibia of a randomly selected rat whose right humerus is 25.83 mm is between 36.64 and 37.39 inches.

Work Step by Step

From problem 14 from Section 14.1: $s_e=0.494$ $∑(x_i-x ̅)^2=3.292^2=10.837$ $x ̅=\frac{24.80+24.59+24.59+24.29+23.81+24.87+25.90+26.11+26.63+26.31+26.84}{11}=25.34$ $n=11$, so: $d.f.=n-2=9$ $level~of~confidence=(1-α).100$% $95$% $=(1-α).100$% $0.95=1-α$ $α=0.05$ $t_{\frac{α}{2}}=t_{0.025}=2.262$ (According to Table VI, for d.f. = 9 and area in right tail = 0.025) $Lower~bound=ŷ -t_{\frac{α}{2}}.s_e\sqrt {1+\frac{1}{n}+\frac{(x^*-x ̅)^2}{∑(x_i-x ̅)^2}}=37.0137-2.262\times0.494\sqrt {1+\frac{1}{11}+\frac{(25.83-25.34)^2}{10.837}}=35.83$ $Upper~bound=ŷ +t_{\frac{α}{2}}.s_e\sqrt {1+\frac{1}{n}+\frac{(x^*-x ̅)^2}{∑(x_i-x ̅)^2}}=37.0137+2.262\times0.494\sqrt {1+\frac{1}{11}+\frac{(25.83-25.34)^2}{10.837}}=38.19$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.