Applied Statistics and Probability for Engineers, 6th Edition

Published by Wiley
ISBN 10: 1118539710
ISBN 13: 978-1-11853-971-2

Chapter 3 - Section 3-6 - Binomial Distribution - Exercises - Page 86: 3-115

Answer

a)$4.32\times 10^{-5} $ b)$0.1257$ c)$0.9899$

Work Step by Step

Let $X$ be the random variable of number of visitors. $X$ has the binomial distribution with parameters $n=1000, p=0.01$, The probability mass function of $X$ is given by: $$ \mathbb{P}(X=x)=\left(\begin{array}{l} 1000 \\ x \end{array}\right) 0.01^{x} \times(0.99)^{1000-x}, x=0,1, \ldots, 1000 $$ Calculate using this formula: $$ \begin{array}{l} \mathbb{P}(X=0)=4.32\times 10^{-5} \\ \mathbb{P}(X= 10)=0.1257\\ \mathbb{P}(X \gt 3)=1-(\mathbb{P}(X=0)+\mathbb{P}(X=1)+\mathbb{P}(X=2)+\mathbb{P}(X=3))=0.9899\\ \end{array} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.